ES 2240
Problem \#03

Determine the value of V_{x}.

$$
\begin{gathered}
10 I+5(I+3)=15 \\
5 I+15
\end{gathered}
$$

$$
\begin{aligned}
& 10 I+5 I=0 \\
& 15 I=0 \Rightarrow I=0 \\
& I+3=3 \\
& V_{\lambda}=5(3 \mathrm{~A})=15 \mathrm{~V}
\end{aligned}
$$

Cut off last time.

Homework Problem \#009

For the circuit shown below:

a. Determine the value of V_{1}.

$$
20 \mathrm{~V} \text { from Ohm's Law }
$$

b. Determine the value of R_{x}.

$$
R_{x}=\frac{40 V}{2 A}=20 \Omega
$$

c. Determine the value of V_{2}.

$$
V_{2}=20 \mathrm{~V}+40 \mathrm{~V}+30 \mathrm{~V}=90 \mathrm{~V}
$$

d. How much power does R_{x} absorb?

$$
P_{x}=(40 \mathrm{~V})(2 \mathrm{~A})=80 \mathrm{~W}
$$

e. How much power does the independent current source deliver?

$$
P_{9}=(2 A) V_{2}=(2 A)(90 \mathrm{~V})=180 \mathrm{~W}
$$

ES 2240
Homework Problem \#010

For the circuit shown below:

a. Determine the value of I_{1}.

$$
I_{1}=\frac{100 V}{25 n}=4 \mathrm{~A}
$$

b. Determine the value of R_{y}.

$$
R_{y}=\frac{100 \mathrm{~V}}{10 \mathrm{~A}}=10 \Omega
$$

c. Determine the value of I_{2}.

$$
I_{2}=5 A+14 A=19 A
$$

d. How much power does R_{y} absorb?

$$
\begin{aligned}
P_{y} & =(100 V)(10 A)=1000 W=1 \mathrm{~kW} \\
& =(10 A)^{2} R_{y}=1000 W=1 \mathrm{~kW}
\end{aligned}
$$

e. How much power does the independent voltage source deliver?

$$
P_{s}=(100 \mathrm{~V})(19 \mathrm{~A})=1900 \mathrm{~W}=1.9 \mathrm{~kW}
$$

ER 2240
Homework Problem \#012

Use equivalent resistance and the current divider equation to determine each of the following:
a. I_{1}

$$
I_{1}=\frac{\frac{1}{50}}{\frac{1}{50}+\frac{1}{25}+\frac{1}{100}} \cdot 7 A=\frac{2}{7} \cdot 7=2 A
$$

b. I_{2}

$$
\mathcal{L}_{2}=\frac{50}{50+20} \cdot 7 A=5 A
$$

c. I_{3}
d. I_{4}

$$
\begin{aligned}
I_{3} & =I_{2}-I_{4} \quad(K C L) \\
& =5 A-4 A C \\
& =1 \mathrm{~A}
\end{aligned}
$$

$$
I_{4}=I_{2}-I_{3}=5-1=4 \mathrm{~A}
$$

e. I_{5}

$$
\begin{aligned}
& I_{5}=-I_{4}=-4 A \\
& I_{3}=\frac{1}{2 \frac{1}{20}+\frac{1}{20}+\frac{1}{102}}=4 A
\end{aligned}
$$

BE 2240
Problem \#04

a. Determine the power absorbed by the 1Ω resistor.

$$
P_{1 n}=\frac{(30 \mathrm{~V})^{2}}{1 n}=900 \mathrm{~W}
$$

b. Determine the value of I.

$$
\begin{aligned}
& I_{x}=\frac{30 V}{3 \Omega}=10 \mathrm{~A} \\
& I=10 \mathrm{~A}-10 \mathrm{~A}=0
\end{aligned}
$$

c. Determine the power absorbed by the 3Ω resistor.

$$
P_{3 \Omega}=(10 A)^{2}(3 \Omega)=300 \mathrm{~W}
$$

d. How much power is delivered by the 30 V independent voltage source?

$$
\begin{aligned}
& I_{y}=30 \mathrm{~A}+15 \mathrm{~A}+I=45 \mathrm{~A} \\
& \left.P_{V 5}=530 \cup\right)(\sqrt{5} \mathrm{~A})=1350 \mathrm{~W}
\end{aligned}
$$

e. How much power is delivered by the 10 A independent current source?

$$
P_{10 A}=(10 A)(30 \mathrm{~V})=300 \mathrm{~W}
$$

ES 2240
Problem \#05

Find V_{o}.

$$
I_{1}=\frac{4 k \Omega}{4 k \Lambda+12 \Omega} \cdot 24 \mathrm{~mA}=6 \mathrm{~mA}
$$

$$
V_{0}=(6 k n)\left(c_{m A}^{I_{1}}\right)=36 \mathrm{~V}
$$

ES 2240
Problem \#06

Determine the value of V_{x}.

$$
\begin{gathered}
\frac{1}{12} v_{n}+5-2 j+\frac{1}{4} v_{\pi}=0 \\
\frac{1}{3} v_{\pi}=-3
\end{gathered}
$$

$$
V_{x}=-9 V
$$

$$
\frac{1}{12} v_{n}+3+\frac{1}{4} v_{x}=0
$$

 $3 A \underbrace{1}_{-} \underbrace{}_{x}$

LE 2240
Problem \#07

Determine the value of V_{x}.

$$
\begin{array}{r}
-3 A+I+2 A=0 \Rightarrow I=1 A \\
V_{x}=(40 \Omega) I=40 \mathrm{~V}
\end{array}
$$

LE 2240

Problem \#08

Find V_{x}.

ES 2240
Problem \#09

Determine the value of I_{o}.

$$
\begin{aligned}
-(16 k \Omega) I_{0} & =\frac{6 k \Omega}{8 k \Omega}(-12) \\
& =-9
\end{aligned}
$$

$$
\begin{aligned}
L_{0} & =\frac{9}{16 k \Omega} A \\
& =\frac{9}{16} m \cdot t
\end{aligned}
$$

